久久亚洲免费视频_91精品免费看_川上优所有中文字幕在线_亚洲国产成人91精品,青青青视频自偷自拍视频1,国产成人mv免费视频,国色一卡2卡二卡4卡乱码

撥號13573190684
產品目錄
展開

你的位置:首頁 > 技術文章 > 原子吸收分光光度計簡要概括

技術文章

原子吸收分光光度計簡要概括

技術文章

原子吸收分光光度計一般由四大部分組成,即光源(單色銳線輻射源)、試樣原子化器、單色儀和數據處理系統(包括光電轉換器及相應的檢測裝置)。

基本信息

  • 中文名稱

    原子吸收分光光度計

  • 外文名稱

    atomic absorption spectrophotometer

原子吸收光譜儀又稱原子吸收分光光度計,根據物質基態原子蒸汽對特征輻射吸收的作用來進行金屬元素分析。它能夠靈敏可靠地測定微量或痕量元素。

原子吸收分光光度計一般由四大部分組成,即光源(單色銳線輻射源)、試樣原子化器、單色儀和數據處理系統(包括光電轉換器及相應的檢測裝置)。

原子化器主要有兩大類,即火焰原子化器和電熱原子化器。火焰有多種火焰,目前普遍應用的是空氣-乙炔火焰。電熱原子化器普遍應用的是石墨爐原子化器,因而原子吸收分光光度計,就有火焰原子吸收分光光度計和帶石墨爐的原子吸收分光光度計。前者原子化的溫度在2100℃~2400℃之間,后者在2900℃~3000℃之間。

火焰原子吸收分光光度計,利用空氣-乙炔測定的元素可達30多種,若使用氧化亞氮-乙炔火焰,測定的元素可達70多種。但氧化亞氮-乙炔火焰安全性較差,應用不普遍。空氣-乙炔火焰原子吸收分光光度法,一般可檢測到PPm級(10),精密度1%左右。國產的火焰原子吸收分光光度計,都可配備各種型號的氫化物發生器(屬電加熱原子化器),利用氫化物發生器,可測定砷(As)、銻(Sb)、鍺(Ge)、碲(Te)等元素。一般靈敏度在ng/ml級(10),相對標準偏差2%左右。汞(Hg)可用冷原子吸收法測定。

石墨爐原子吸收分光光度計,可以測定近50種元素。石墨爐法,進樣量少,靈敏度高,有的元素也可以分析到pg/mL級。

元素在熱解石墨爐中被加熱原子化,成為基態原子蒸汽,對空心陰極燈發射的特征輻射進行選擇性吸收。在一定濃度范圍內,其吸收強度與試液中被測元素的含量成正比。其定量關系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I為透射光強度;I0為發射光強度;T為透射比;L為光通過原子化器光程(長度),每臺儀器的L值是固定的;C是被測樣品濃度;所以A=KC。

利用待測元素的共振輻射,通過其原子蒸汽,測定其吸光度的裝置稱為原子吸收分光光度計。它有單光束,雙光束,雙波道,多波道等結構形式。其基本結構包括光源,原子化器,光學系統和檢測系統。它主要用于痕量元素雜質的分析,具有靈敏度高及選擇性好兩大主要優點。廣泛應用于各種氣體,金屬有機化合物,金屬醇鹽中微量元素的分析。但是測定每種元素均需要相應的空心陰極燈,這對檢測工作帶來不便。

火焰原子化法的優點是:火焰原子化法的操作簡便,重現性好,有效光程大,對大多數元素有較高靈敏度,因此應用廣泛。缺點是:原子化效率低,靈敏度不夠高,而且一般不能直接分析固體樣品;

石墨爐原子化器的優點是:原子化效率高,在可調的高溫下試樣利用率 達100%,靈敏度高,試樣用量少,適用于難熔元素的測定。缺點是:試樣組成不均勻性的影響較大,測定精密度較低,共存化合物的干擾比火焰原子化法大,干擾背景比較嚴重,一般都需要校正背景。

應用

原子吸收光譜分析現已廣泛用于各個分析領域,主要有四個方面:理論研究;元素分析;有機物分析;金屬化學形態分析

1. 理論研究中的應用:

原子吸收可作為物理和物理化學的一種實驗手段,對物質的一些基本性能進行測定和研究。電熱原子化器容易做到控制蒸發過程和原子化過程,所以用它測定一些基本參數有很多優點。用電熱原子化器所測定的一些有元素離開機體的活化能、氣態原子擴散系數、解離能、振子強度、光譜線輪廓的變寬、溶解度、蒸氣壓等。

2. 元素分析中的應用:

原子吸收光譜分析,由于其靈敏度高、干擾少、分析方法簡單快速,現巳廣泛地應用于工業、農業、生化、地質、冶金、食品、環保等各個領域,目前原子吸收巳成為金屬元素分析的強有力工具之一,而且在許多領域巳作為標準分析方法。 原子吸收光譜分析的特點決定了它在地質和冶金分析中的重要地位,它不僅取代了許多一般的濕法化學分析,而且還與X- 射線熒光分析,甚至與中子活化分析有著同等的地位。目前原子吸收法巳用來測定地質樣品中70多種元素,并且大部分能夠達到足夠的靈敏度和很好的精密度。鋼鐵、合金和高純金屬中多種痕量元素的分析現在也多用原子吸收法。 原子吸收在食品分析中越來越廣泛。食品和飲料中的20多種元素巳有滿意的原子吸收分析方法。生化和臨床樣品中必需元素和有害元素的分析現巳采用原子吸收法。有關石油產品、陶瓷、農業樣品、藥物和涂料中金屬元素的原子吸收分析的文獻報道近些年來越來越多。水體和大氣等環境樣品的微量金屬元素分析巳成為原子吸收分析的重要領域之一。 利用間接原子吸收法尚可測定某些非金屬元素。

3. 有機物分析中的應用:

利用間接法可以測定多種有機物。8- 羥基喹啉(Cu)、醇類(Cr)、醛類(Ag)、酯類(Fe)、酚類(Fe)、聯乙酰(Ni)、酞酸(Cu)、脂肪胺(co)、氨基酸(Cu)、維生素C(Ni)、氨茴酸(Co)、雷米封(Cu)、甲酸奎寧(Zn)、有機酸酐(Fe)、苯甲基青霉素(Cu)、葡萄糖(Ca)、環氧化物水解酶(PbO、含鹵素的有機化合物(Ag)等多種有機物,均通過與相應的金屬元素之間的化學計量反應而間接測定。

4. 金屬化學形態分析中的應用:

通過氣相色譜和液體色譜分離然后以原子吸收光譜加以測定,可以分析同種金屬元素的不同有機化合物。例如汽油中5種烷基鉛,大氣中的5種烷基鉛、烷基硒、烷基胂、烷基錫,水體中的烷基胂、烷基鉛、烷基揭、烷基汞、有機鉻,生物中的烷基鉛、烷基汞、有機鋅、有機銅等多種金屬有機化合物,均可通過不同類型的光譜原子吸收聯用方式加以鑒別和測定。

1802年烏拉斯登(W.H.Wollaston)發現太陽連續光譜中存在許多暗線。

1814年夫勞霍弗(J.Fraunhofer)再次觀察到這些暗線,但無法解釋,將這些暗線稱為夫勞霍弗暗線。

1820年布魯斯特(D.Brewster)*個解釋了這些暗線是由太陽外圍大氣圈對太陽光吸收而產生。

1860年克希霍夫(G.Kirchoff)和本生(R.Bunsen)根據鈉(Na)發射線和夫勞霍弗暗線的光譜中的位置相同這一事實,證明太陽連續光譜中的暗線D線,是太陽外圍大氣圈中的Na原子對太陽光譜在Na輻射吸收的結果;并進一步闡明了吸收與發射的關系--氣態的原子能發射某些特征譜線,也能吸收同樣波長的這些譜線。這是歷*用原子吸收光譜進行定性分析的*例證。

很長一段時間,原子吸收主要局限于天體物理方面的研究,在分析化學中的應用未能引起重視,其主要原因是未找到可產生銳線光譜的光源。

1916年帕邢(Paschen)首先研制成功空心陰極燈,可作為原子吸收分析用光源。

直至20世紀30年代,由于汞的廣泛應用,對大氣中微量汞的測定曾利用原子吸收光譜原理設計了測汞儀,這是原子吸收在分析中的zui早應用。

1954年澳大利亞墨爾本物理研究所在展覽會上展出世界上*臺原子吸收分光光度計。空心陰極燈的使用,使原子吸收分光光度計商品儀器得到了發展。

1955年澳大利亞聯邦科學與工業研究所物理學家沃爾什(A.Walsh)首先提出原子吸收光譜作為一般分析方法用于分析各元素的可能性,并探討了原子濃度與吸光度值之間的關系及實驗中的有關問題。然后在光譜化學學報上發表了論文《原子吸收光譜在分析上的應用》。從此一些國家的科學家競相開展這方面的研究,并取得了巨大的進展。隨著科學技術的發展,原子能、半導體、無線電電子學、宇宙航行等科學對材料純度要求越來越高,如原子能材料鈾、釷、鈹、鋯等,要求雜質小于10~10g,半導體材料鍺、硒中雜質要求低于 10~ 10g,熱核反應結構材料中雜質需低于10g,上述材料的純度要求用傳統分析手段是達不到的,而原子吸收分析能較好地滿足超純分析的要求。

1959年前蘇聯學者里沃夫(В.B.ПьBOB)設計出石墨爐原子化器,1960年提出了電熱原子化法(即非火焰原子吸收法),使原子吸收分析的靈敏度有了極大提高。

1965年威尼斯(J.B.Willis)將氧化亞氮-乙炔火焰用于原子吸收法中,使可測定元素數目增至70個。

1967年馬斯曼(H.Massmann)對里沃夫石墨爐進行改進,設計出電熱石墨爐原子化器(即高溫石墨爐)。

20世紀60年代后期發展了"間接原子吸收分光光度法",使過去難以用直接法測定的元素和有機化合物的測定有了可能。

1971年美國瓦里安(Varian)公司生產出世界上*臺縱向加熱石墨爐,并首先發展Zeemen背景校正技術。

1981年原子吸收分析儀實現操作自動化。

1984年*臺連續氫化物發生器問世。

1990年推出Mark V1焰燃燒頭。

1995年在線火焰自動進樣器(SIPS8)研制成功并投入使用。

1998年*臺快速分析火焰原子吸收220FS誕生。

2002年世界上*套火焰和石墨爐同時分析的原子吸收光譜儀生產并投放市場。

現在,原子吸收分光光度計采用的電子技術,使儀器顯示數字化、進樣自動化,計算機數據處理系統使整個分析實現自動化。

我國在1963年開始對原子吸收分光光度法有一般性介紹。1965年復旦大學電光源實驗室和冶金工業部有色金屬研究所分別研制成功空心陰極燈光源。1970年北京科學儀器廠試制成單光束火焰原子吸收分光光度計。現在我國已有多家企業生產多種型號、性能較*原子吸收分光光度計,比如濟南精測科技公司的SDA-100。

原子吸收分光光度法應用也有一定的局限性,即每種待測元素都要有一個能發射特定波長譜線的光源。原子吸收分析中,首先要使待測元素呈原子狀態,而原子化往往是將溶液噴霧到火焰中去實現,這就存在理化方面的干擾,使對難溶元素的測定靈敏度還不夠理想,因此實際效果理想的元素僅30余個;由于儀器使用中,需用乙炔、氫氣、氬氣、氧化亞氮(俗稱笑氣)等,操作中必須注意安全。

聯系我們

地址:北京市海淀區半壁店甲一號院5號樓1層 傳真: Email:[email protected]
24小時在線客服,為您服務!

版權所有 © 2025 北京中合測通儀器有限公司 備案號:京ICP備2025105415號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap
關鍵詞:氣相色譜儀、原子吸收分光光度計、液相色譜儀 、原子熒光

在線咨詢
QQ客服
QQ:958814993
電話咨詢
關注微信

化工儀器網

推薦收藏該企業網站
主站蜘蛛池模板: 九龙城区| 左贡县| 彰化市| 岑巩县| 三门峡市| 镇宁| 平和县| 丰都县| 蓬安县| 勐海县| 江北区| 民勤县| 贞丰县| 南部县| 双鸭山市| 朝阳县| 五原县| 新源县| 芷江| 庆城县| 册亨县| 湖口县| 津南区| 新安县| 无极县| 自贡市| 阳新县| 察哈| 溆浦县| 巴塘县| 郸城县| 闻喜县| 德格县| 花莲县| 乌兰浩特市| 泸定县| 唐山市| 杨浦区| 巫山县| 静宁县| 沙田区|